Генеалогический метод изучения закономерностей наследования признаков человека. Генеалогический метод. Используемая символика. Правила составления родословных Родословная генетика

Генеалогический метод ввел в конце XIX в. Френсис Гальтон . Он основан на построении родословных и прослеживании в ряду поколений передачи определенного признака.

Этот метод применим, если известны прямые родственники – предки обладателя наследственного признака (пробанда ) по материнской и отцовской линиям в ряду поколений или в том случае, когда известны потомки пробанда также в нескольких поколениях.

Принята система обозначений в родословных человека, которуюпредложил Г. Юст в 1931 г. Поколения обозначают римскими цифрами, индивидов в данном поколении – арабскими.

Этапы генеалогического анализа:

1)сбор данных обо всех родственниках обследуемого (анамнез);

2) построение родословной;

3) анализ родословной и выработка заключения.

Сложность сбора анамнеза заключается в том, что пробанд должен хорошо знать, по возможности, большинство своих родственников и состояние их здоровья.

Метод позволяет установить:

1) является ли данный признак наследственным;

2) тип и характер наследования;

3) зиготность лиц родословной;

4) пенентрантность гена;

5) вероятность рождения ребенка с данной наследственной патологией.

Типы наследования:

1. Аутосомно – доминантный

1) больные в каждом поколении;

2) больной ребенок у больных родителей;

4) наследование идет по вертикали и по горизонтали;

5) вероятность наследования 100%, 75% и 50% (АА×АА, АА×аа, АА×Аа; Аа×Аа; Аа×аа).

Следует подчеркнуть, что вышеперечисленные признаки аутосомно - доминантного типа наследования будут проявляться только при полном доминировании . Так наследуется у человека полидактилия (шестипалость), брахидактилия, хондродистрофическая карликовость, катаракта, веснушки, курчавые волосы, карий цвет глаз и др. При неполном доминировании у гибридов будет проявляться промежуточная форма наследования. При неполной пенетрантности гена больные могут быть не в каждом поколении.

2. Аутосомно – рецессивный тип наследования характеризуется следующими признаками:

3) болеют в равной степени мужчины и женщины;

4) наследование идет преимущественно по горизонтали;

5) вероятность наследования 25%, 50% и 100%.

Чаще всего вероятность наследования аутосомно – рецессивного типа составляет 25%, так как вследствие тяжести заболевания такие больные либо не доживают до детородного возраста, либо не вступают в брак. Так наследуется у человека фенилкетонурия , серповидно – клеточная анемия, альбинизм, рыжие волосы, голубой цвет глаз и др.

3.Сцепленный с полом рецессивный тип наследования характеризуется следующими признаками:

1) больные не в каждом поколении;

2) у здоровых родителей больной ребенок;

3) болеют преимущественно мужчины;

4) наследование идет в основном по горизонтали;

5) вероятность наследования 25% от всех детей и 50% у мальчиков.

Так наследуется у человека гемофилия , дальтонизм, наследственная анемия, мышечная дистрофия Дюшенна и др.

4.Сцепленный с полом доминантный тип наследования сходен с аутосомно-доминантным, за исключением того, что мужчина передает этот признак всем дочерям (сыновья получают от отца Y-хромосому, они здоровы). Примером такого заболевания является особая форма рахита, устойчивая к лечению витамином D (витамин D – резистентный рахит ). Мужчины болеют более тяжело. Еще 2 подобных заболевания: фолликулярный кератоз (сопровождается полной потерей волос, ресниц, бровей) и пигментный дерматоз .

5.Голандрический тип наследования характеризуется следующими признаками:

1) больные во всех поколениях;

2) болеют только мужчины;

3) у больного отца больны все его сыновья;

4) вероятность 100% у мальчиков.

Так наследуются у человека ихтиоз кожи , обволосение наружных слуховых проходов и средних фаланг пальцев, перепонки между пальцами на ногах и др. Голандрические признаки не имеют существенного значения в наследственной патологии человека. Существуют и патологические мутации, нарушающие формирование семенников и сперматогенез, но они не передаются по наследству (носители их стерильны).

Использование генеалогического метода показало также, что вероятность появления уродства , мертворождений , ранней смертности в потомстве родственных браков значительно выше, чем в неродственных. Объяснить это можно тем, что родственники имеют одинаковые гены чаще, чем неродственники, а следовательно, в родственных браках чаще возникают гомозиготные комбинации , в том числе и по рецессивным генам, определяющим те или иные аномалии.

Вот пример выявления патологического рецессивного признака при родственном браке. От двух родственных браков появилось в одной семье 4 ребенка из 8, а в другой – 2 из 5, страдающих наследственной амавротической идиотией (поражение центральной нервной системы). Один из двух общих предков передал рецессивный ген через три поколения каждому из четырех родителей.

Генеалогический метод широко используется и как метод диагностики болезней с наследственной природой, что имеет большое значение для медико – генетических консультаций, когда заинтересованные в здоровье потомства лица ставят вопрос перед врачом об опасении иметь больное потомство.

Близнецовый метод

Близнецовый метод изучения генетики человека введен в медицинскую практику Ф. Гальтоном в 1876 г. Он позволяет определить роль генотипа и среды в проявлении признаков.

Близнецами называют одновременно родившихся особей у одноплодных животных (человек, лошадь, крупный рогатый скот и др.).

Различают моно- и дизиготных близнецов. Монозиготные (однояйцевые), идентичные близнецы развиваются из одной оплодотворенной яйцеклетки (явление полиэмбрионии). Монозиготные близнецы имеют совершенно одинаковый генотип и, если они отличаются фенотипически, то это обусловлено воздействием факторов внешней среды.

Дизиготные (двуяйцевые, или разнояйцевые) близнецы развиваются после оплодотворения сперматозоидами нескольких одновременно созревших яйцеклеток. Близнецы имеют разный генотип, и их фенотипические различия обусловлены как генотипом, так и факторами внешней среды.

Монозиготные близнецы имеют большую степень сходства по признакам, которые определяются в основном генотипом. Например, монозиготные близнецы всегда однополы, у них одинаковые группы крови по разным системам (АВ0, Rh, MN и др.), одинаковый цвет глаз, однотипны дерматоглифические показатели на пальцах и ладонях и др.

Процент сходства группы близнецов по изучаемому признаку называется конкордантностью , а процент различия – дискордантностью . Так как монозиготные близнецы имеют одинаковый генотип, то конкордантность их выше, чем у дизиготных.

Для оценки роли наследственности и среды в развитии того или иного признака используют формулу Хольцингера :

Н =
КМБ% - КДБ%;

где Н – наследуемость признака, КМБ% - конкордантность монозиготных близнецов, КДБ% - конкордантность дизиготных близнецов.

У человека чаще всего встречаются двойни, реже тройни, еще реже – четверни, совсем редко – пятерни. Статистика свидетельствует, что пятерни рождаются примерно один раз на 54 млн родов, шестерни ~ на 5 млрд родов, семерни еще более редки. В среднем частота рождения близнецов близка к 1% и 1/3 из них составляют ОБ.

Для использования близнецов в генетических исследованиях очень важно точно определить тип близнецов . Диагностика производится на основании нескольких критериев : 1) ОБ обязательно одного пола, РБ могут быть как одного пола, так и разных полов; 2) наличие сходства (конкордантности) у ОБ и несходства (дискордантности) у РБ по многим признакам, в том числе по группам крови; правда, необходимо учитывать, что во время внутриутробной жизни могут возникать нарушения развития, соматические мутации и т. п. у одного из ОБ, что может привести к некоторым отличиям партнеров; 3) решающий, но трудноосуществимый критерий – реципрокная трансплантация тканей у ОБ столь же успешна, как и автотрансплантация, у РБ она невозможна в силу иммунологической несовместимости.

Человеческие близнецы – прекрасный материал для разработки общебиологической и очень важной в практическом отношении проблемы: о роли наследственности и среды в развитии признаков.

Пара ОБ имеет тождественный генотип, РБ – разный. Для обоих партнеров одной пары ОБ или РБ внешняя среда может оказаться или одинаковой, или разной.

Сравнение развития ОБ в одинаковой среде и в разной среде открывает возможность судить о влиянии среды на признаки.

Сравнение развития ОБ и РБ в одинаковой среде позволяет выяснить роль наследственности в развитии признаков.

4. Популяционно – статистический метод

Популяционно – статистический методизучения генетики человека основан на использовании закона Харди – Вайнберга. Он позволяет определять частоту генов и генотипов в популяциях людей. Например, гомозиготы по гену HbS в России практически не встречаются, а в странах Западной Африки частота их варьирует: от 25% в Камеруне до 40% в Танзании.

Изучение распространения генов среди населения различных географических зон (геногеография ) дает возможность установить центры происхождения различных этнических групп и их миграции, определить степень риска появления наследственных болезней у отдельных индивидуумов.

Содержание

Наука о наследственности долгое время считалась чем-то сродни шарлатанству. Неслучайно даже в середине 20 века генетика считалась лженаукой, а в СССР ее представители подвергались преследованию. Позже все встало на свои места, генетика заняла почетное место среди фундаментальных наук, которые занимаются изучением живого и растительного мира. Генеалогический метод является одной из разновидностей генетического исследования: изучается родословная человека, что помогает выявить тенденцию к наследованию наследственных признаков.

Что такое генеалогический метод исследования

Метод анализа родословной был изложен в конце 19 века Ф. Гальтоном, позже Г. Юстом были даны единые уловные обозначения при составлении генеалогического древа. Суть исследования – составление подробной родословной человека и последующий его анализ с целью выявить определенные признаки, которым привержены члены одной семьи, а также наличие наследственных заболеваний. Сейчас появляются новые лабораторные методы проведения исследований, но консультирование специалистом по составлению родословной до сих пор находит применение в медицине и прикладной науке.

Для чего используют

В прикладной науке генеалогический метод используется для изучения принципов распространения среди членов одной семьи различных наследственных признаков: веснушки, способность сворачивать язык в трубочку, короткопалость, сросшиеся пальцы, рыжие волосы, склонность к диабету, заячья губа и прочее. Причем выделяется несколько типов наследования – аутосомно-доминантный, аутосомно-рецессивный, сцепленный с полом.

В медицине клинико-генеалогический метод помогает выявить наличие патологических признаков и вероятность их наследования. Зачастую картина становится ясна и без дополнительных исследований (анализ плацентарной жидкости на наличие генетических заболеваний). Главное – установить наследственный признак и просчитать вероятность его проявления в будущих поколениях.

В чем заключается сущность генеалогического метода

Главный инструмент генеалогического анализа – сбор информации об индивидууме и его семье. При помощи составления подробных родословных появляется возможность выделить тот или иной наследственный признак. В медицине такая методика называется клинико-генеалогической. Специалист изучает родословные связи и пытается выявить наследственные признаки, проследить их наличие у близких и дальних родственников. Генеалогический метод состоит из двух этапов – составления родословной и ее подробного анализа.

Задачи

Основной плюс генеалогического метода – его универсальность. Он применяется при решении теоретических и практических задач, например, при определении вероятности наследования некоторых заболеваний:

  • выявление генетического признака;
  • установление его как наследственного;
  • определения типа исследования и пенетарности гена;
  • вычисление вероятности его наследования;
  • определение интенсивности мутационного процесса;
  • составление генетических карт хромосом.

Цели

Основная цель генеалогического анализа в медицине – диагностика наследственных патологий. При этом составление родословной является одним из этапов исследования, которое выявляет возможность наследования определенного генетического признака. Речь идет не только о таких наследственных особенностях, как рыжие волосы или короткопалость, аномалии характера, но и о серьезных заболеваниях, которые могут передаваться по наследству, например, шизофрения, муковисцидоз или гемофилия.

Генетический анализ на наследственные заболевания у беременных

Любая пара, ожидающая ребенка, может обратиться к генетику с целью выяснить, не ли у их будущего ребенка каких-либо генетических отклонений. В некоторых случаях консультация генетика является обязательной:

  • возраст родителей (более 35 лет у матери и 40 лет у отца);
  • в семье уже есть дети с генетическими заболеваниями;
  • неблагоприятные условия жизни одного из родителей (плохая экология, злоупотребление алкоголем и наркотиками);
  • мать во время болезни перенесла какое-либо серьезное инфекционное заболевание;
  • один из родителей болен психическим заболеванием;

Профессиональное генеалогическое исследование является одним из видов генетических исследований, которые проводят для будущих родителей. Другие методы исследования наследственности человека включают в себя:

  • ультразвуковая диагностика;
  • исследование околоплодных вод (амниоцентез);
  • исследование на предмет возможных последствий после перенесенных во время беременности инфекций (плацентоцентез);
  • генетическое исследование пуповинной крови (кордоцентез).

Этапы генеалогического метода

При составлении родословной и последующем ее анализе врач-генетик действует поэтапно. Выделяются три основных:

  1. Определяется пробанд для которого составляется подробная родословная. При ожидании ребенка пробандом почти всегда является мать, в остальных случаях – носитель наследственного признака.
  2. Составление родословной, при этом собирается анамнез пробанда и его родственные связи.
  3. Анализ родословной и вывод о вероятности и типе наследования признака.

Составление родословной

При медико-генетическом консультировании за основу берется пробанд – человек, который предположительно является носителем наследственного признака или страдающий генетическим заболеванием. Родословная составляется со слов исследуемого, при этом для точности картины необходимо собрать сведения о трех, а то и четырех поколениях его семьи. Кроме того, специалисты опрашивают самого пробанда и проводят визуальный осмотр на предмет наличия и степени выраженности наследственного признака.

Все сведения записываются в медико-генетическую карту в следующем порядке:

  • информация о пробанде – наличие наследственного признака или генетических заболеваний, состояние, акушерский анамнез, психический анамнез, национальность и место жительства;
  • сведения о родителях, братьях и сестрах (сибсах);
  • данные о родственниках со стороны матери и отца.

Символика генеалогического метода

В генеалогических таблицах используются определенные символы, которые были разработаны в 1931 году Г. Юстом. Женский пол в них обозначен кружком, мужской – квадратом. Некоторые ученые применяют для женского рода «Зеркало Венеры» (кружок с крестиком), а для мужского «Щит и копье Марса» (кружок со стрелкой). Сибсов располагают на одной линии с пробандом, номера поколений показаны в виде римских цифр, родственники одного поколения – арабских.

Генеалогический анализ

Использование анализа родословной помогает выявить наследственный признак, как правило, патологический. Это устанавливается, если он встречается более двух раз в нескольких поколениях. После этого осуществляется оценка типа наследования (аутосомно-рецессивный, аутсомно-доминантный, или сцепленный с полом). Далее идут выводы о вероятности появления наследственного признака у детей членов родословной и при необходимости указание для направления на дополнительные генетические исследования.

Наследственный характер признака

Аутсомно-доминантный тип наследования определяется при полном доминировании признака, к ним относятся цвет глаз, веснушки, структура волос и т.д. В случае болезни:

  • наследование идет в равной степени у женщин и мужчин;
  • имеются больные по вертикали (в поколениях) и горизонтали (братья и сестры);
  • у больных родителей высока вероятность наследования патологического гена;
  • при наличии большого родителя риск наследования составляет 50%.

Аутсомно-рецессивный тип:

  • носителями являются братья-сестры – по горизонтальной линии;
  • в родословной немого носителей среди родных пробанда;
  • мать и отец носителя здоровы, но могут быть носителями рецессивного гена, при этом вероятность, что ребенок унаследует патологический признай – 25%.

Существует тип наследственности, сцепленной с полом:

  • доминантное Х-сцепление – проявляется у обоих полов, но передается по женской линии;
  • рецессивное Х-сцепление – передается только мужчинам от матерей, причем дочери будут здоровы, а сыновья – больны с разной вероятностью;
  • У-сцепленное (голандрическое) – передается по мужской линии;

Тип наследования и пенетрантности гена


Определение групп сцепления и картирования хромосом

Изучение мутационного процесса

Клинический анализ родословной изучает изменчивость мутационных процессов, при этом метод является полезным при анализе возникновения «нетипичных» или «спонтанных» мутаций, к примеру, синдром Дауна. Изучается различие мутаций эпизодического характера от закономерных генных процессов в рамках одной семьи. При этом рассматриваются следующие факторы мутаций:

  • возникновение мутации;
  • интенсивность процесса;
  • факторы, способствовавшие появлению.

Анализ взаимодействия генов

При медико-генеалогическом анализе выявляются процессы взаимодействия генов, которые помогают расшифровать обусловленность появления патологических наследственных признаков в рамках одной семьи. Тщательно разработанная родословная становится фундаментом для дальнейших исследований интенсивности развития мутации генов, выявления типа наследования и вероятность получения гена у наследников пробанда.

Гомо и гетерозиготность родителей

Совокупность наследственных признаков переходит к нам от родителей. Ген, полученный от обоих родителей, будет называться гомозиготным. Если у матери и отца кудрявые волосы, то ген, отвечающий за структуру волос, определяется как гомозиготный. Если же у матери волосы прямые, а у отца кудрявые, то ген структуры волос определяется как гетерозиготный. У ребенка может быть гомозиготный ген цвета глаз и гетерозиготный ген цвета волос. В случае полного доминирования гена, признак наследуется почти со 100% вероятностью по вертикальной линии.

Для генетических исследований человек является неудобным объектом, так как у человека: невозможно экспериментальное скрещивание; большое количество хромосом; поздно наступает половая зрелость; малое число потомков в каждой семье; невозможно уравнивание условий жизни для потомства.

В генетике человека используется ряд методов исследования.

Генеалогический метод

Использование этого метода возможно в том случае, когда известны прямые родственники — предки обладателя наследственного признака (пробанда ) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений. После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Условные обозначения, принятые при составлении родословных:
1 — мужчина; 2 — женщина; 3 — пол не выяснен; 4 — обладатель изучаемого признака; 5 — гетерозиготный носитель изучаемого рецессивного гена; 6 — брак; 7 — брак мужчины с двумя женщинами; 8 — родственный брак; 9 — родители, дети и порядок их рождения; 10 — дизиготные близнецы; 11 — монозиготные близнецы.

Благодаря генеалогическому методу были определены типы наследования многих признаков у человека. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев), возможность свертывать язык в трубочку, брахидактилия (короткопалость, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Доминантный признак — способность свертывать язык в трубочку (1) и его рецессивный аллель — отсутствие этой способности (2).
3 — родословная по полидактилии (аутосомно-доминантное наследование).

Целый ряд признаков наследуется сцепленно с полом: Х -сцепленное наследование — гемофилия, дальтонизм; Y -сцепленное — гипертрихоз края ушной раковины, перепончатость пальцев ног. Имеется ряд генов, локализованных в гомологичных участках Х - и Y -хромосом, например общая цветовая слепота.

Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии. Примером этого является наследование гемофилии в царских домах Европы.

— гемофилик; — женщина-носитель.

Близнецовый метод

1 — монозиготные близ-нецы; 2 — дизигот-ные близ-нецы.

Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) и дизиготными (разнояйцевыми).

Монозиготные близнецы развиваются из одной зиготы (1), которая на стадии дробления разделилась на две (или более) части. Поэтому такие близнецы генетически идентичны и всегда одного пола. Монозиготные близнецы характеризуются большой степенью сходства (конкордантностью ) по многим признакам.

Дизиготные близнецы развиваются из двух или более одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток (2). Поэтому они имеют различные генотипы и могут быть как одного, так и разного пола. В отличие от монозиготных, дизиготные близнецы характеризуются дискордантностью — несходством по многим признакам. Данные о конкордантности близнецов по некоторым признакам приведены в таблице.

Признаки Конкордантность, %
Монозиготные близнецы Дизиготные близнецы
Нормальные
Группа крови (АВ0) 100 46
Цвет глаз 99,5 28
Цвет волос 97 23
Патологические
Косолапость 32 3
«Заячья губа» 33 5
Бронхиальная астма 19 4,8
Корь 98 94
Туберкулез 37 15
Эпилепсия 67 3
Шизофрения 70 13

Как видно из таблицы, степень конкордантности монозиготных близнецов по всем приведенным признакам значительно выше, чем у дизиготных, однако она не является абсолютной. Как правило, дискордантность монозиготных близнецов возникает в результате нарушений внутриутробного развития одного из них или под влиянием внешней среды, если она была разной.

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: шизофрении, эпилепсии, сахарному диабету и другим.

Наблюдения за монозиготными близнецами дают материал для выяснения роли наследственности и среды в развитии признаков. Причем под внешней средой понимают не только физические факторы среды, но и социальные условия.

Цитогенетический метод

Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом — 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных .

Материалом для кариотипического анализа чаще всего являются лимфоциты крови. Кровь берется у взрослых из вены, у новорожденных — из пальца, мочки уха или пятки. Лимфоциты культивируются в особой питательной среде, в состав которой, в частности, добавлены вещества, «заставляющие» лимфоциты интенсивно делиться митозом. Через некоторое время в культуру клеток добавляют колхицин. Колхицин останавливает митоз на уровне метафазы. Именно во время метафазы хромосомы являются наиболее конденсированными. Далее клетки переносятся на предметные стекла, сушатся и окрашиваются различными красителями. Окраска может быть а) рутинной (хромосомы окрашиваются равномерно), б) дифференциальной (хромосомы приобретают поперечную исчерченность, причем каждая хромосома имеет индивидуальный рисунок). Рутинная окраска позволяет выявить геномные мутации, определить групповую принадлежность хромосомы, узнать, в какой группе изменилось число хромосом. Дифференциальная окраска позволяет выявить хромосомные мутации, определить хромосому до номера, выяснить вид хромосомной мутации.

В тех случаях, когда необходимо провести кариотипический анализ плода, для культивирования берутся клетки амниотической (околоплодной) жидкости — смесь фибробластоподобных и эпителиальных клеток.

К числу хромосомных заболеваний относятся: синдром Клайнфельтера, синдром Тернера-Шерешевского, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47, ХХY ) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).

Синдром Тернера-Шерешевского (45, Х0 ) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Тернера-Шерешевского имеют малый рост, тело диспропорционально — более развита верхняя часть тела, плечи широкие, таз узкий — нижние конечности укорочены, шея короткая со складками, «монголоидный» разрез глаз и ряд других признаков.

Синдром Дауна — одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47; 21, 21, 21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция р -плеча аутосомы №5 приводит к развитию синдрома «крик кошки». У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный «мяукающий» тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод

Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

Популяционно-статистический метод

Это метод изучения распространения наследственных признаков (наследственных заболеваний) в популяциях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Под популяцией понимают совокупность особей одного вида, длительное время обитающих на определенной территории, свободно скрещивающихся друг с другом, имеющих общее происхождение, определенную генетическую структуру и в той или иной степени изолированных от других таких совокупностей особей данного вида. Популяция является не только формой существования вида, но и единицей эволюции, поскольку в основе микроэволюционных процессов, завершающихся образованием вида, лежат генетические преобразования в популяциях.

Изучением генетической структуры популяций занимается особый раздел генетики — популяционная генетика . У человека выделяют три типа популяций: 1) панмиктические, 2) демы, 3) изоляты, которые отличаются друг от друга численностью, частотой внутригрупповых браков, долей иммигрантов, приростом населения. Население крупного города соответствует панмиктической популяции. В генетическую характеристику любой популяции входят следующие показатели: 1) генофонд (совокупность генотипов всех особей популяции), 2) частоты генов, 3) частоты генотипов, 4) частоты фенотипов, система браков, 5) факторы, изменяющие частоты генов.

Для выяснения частот встречаемости тех или иных генов и генотипов используется закон Харди-Вайнберга .

Закон Харди-Вайнберга

В идеальной популяции из поколения в поколение сохраняется строго определенное соотношение частот доминантных и рецессивных генов (1), а также соотношение частот генотипических классов особей (2).

p + q = 1, (1)
р 2 + 2pq + q 2 = 1, (2)

где p — частота встречаемости доминантного гена А ; q — частота встречаемости рецессивного гена а ; р 2 — частота встречаемости гомозигот по доминанте АА ; 2pq — частота встречаемости гетерозигот Аа ; q 2 — частота встречаемости гомозигот по рецессиву аа .

Идеальной популяцией является достаточно большая, панмиктическая (панмиксия — свободное скрещивание) популяция, в которой отсутствуют мутационный процесс, естественный отбор и другие факторы, нарушающие равновесие генов. Понятно, что идеальных популяций в природе не существует, в реальных популяциях закон Харди-Вайнберга используется с поправками.

Закон Харди-Вайнберга, в частности, используется для примерного подсчета носителей рецессивных генов наследственных заболеваний. Например, известно, что в данной популяции фенилкетонурия встречается с частотой 1:10000. Фенилкетонурия наследуется по аутосомно-рецессивному типу, следовательно, больные фенилкетонурией имеют генотип аа , то есть q 2 = 0,0001. Отсюда: q = 0,01; p = 1 - 0,01 = 0,99. Носители рецессивного гена имеют генотип Аа , то есть являются гетерозиготами. Частота встречаемости гетерозигот (2pq ) составляет 2 · 0,99 · 0,01 ≈ 0,02. Вывод: в данной популяции около 2% населения — носители гена фенилкетонурии. Заодно можно подсчитать частоту встречаемости гомозигот по доминанте (АА ): p 2 = 0,992, чуть меньше 98%.

Изменение равновесия генотипов и аллелей в панмиктической популяции происходит под влиянием постоянно действующих факторов, к которым относятся: мутационный процесс, популяционные волны, изоляция, естественный отбор, дрейф генов, эмиграция, иммиграция, инбридинг. Именно благодаря этим явлениям возникает элементарное эволюционное явление — изменение генетического состава популяции, являющееся начальным этапом процесса видообразования.

Генетика человека — одна из наиболее интенсивно развивающихся отраслей науки. Она является теоретической основой медицины, раскрывает биологические основы наследственных заболеваний. Знание генетической природы заболеваний позволяет вовремя поставить точный диагноз и осуществить нужное лечение.

    Перейти к лекции №21 «Изменчивость»

Генеалогический метод исследования наследственности человека

В настоящее время медицинская генетика располагает огромным количеством методов исследования, позволяющих решать подавляющее большинство практических и теоретических вопросов. Ряд из этих методов имеет уже большую историю (генеалогический, цитологический, близнецовый), другие возникли недавно, но получили неоценимое значение, как для теории, так и для практики (иммунологический, ДНК-зондовая диагностика и т.д.)

Изучение генетики человека связано с рядом особенностей и объективных трудностей:

    позднее половое созревание и редкая смена поколений;

    малое количество потомков;

    невозможность экспериментирования;

    невозможность создания одинаковых условий жизни.

Цитогенетические методы исследования генетики человека основаны на исследовании человеческого кариотипа (хромосомный набор, совокупность признаков хромосом в клетках тела).

Этапы исследования клеток человека на искусственных питательных средах; проведение специальных манипуляций, вследствие чего хромосомы «рассыпаются» и лежат свободно; окрашивание хромосом; изучение хромосом под микроскопом и фотографирование; вырезание отдельных хромосом и построение детального изображения хромосомного набора.

В 70-е годы были разработаны методы дифференциального окрашивания хромосом человека, которые позволили выявлять геномные (например, болезнь Дауна) и хромосомные (например, синдром «кошачьего крика») мутации.

Существуют молекулярно-цитогенетические методы, которые основаны на методе FISH, с помощью которого можно определять локализацию генов в хромосомах и все хромосомные отклонения от нормы.

Биохимические методы

Практические все биохимические реакции, протекающие в человеческом организме и в конечном итоге составляющие его обмен веществ, регулируются ферментами. Биохимические методы изучения генетики человека основаны на изучении активности ферментных систем. Активность оценивают или по активности самого фермента, или по количеству конечных продуктов реакции, которую контролирует данный фермент

Применяются разнообразные методы изучения, среди них хроматографические, флюорометрические, радиоиммунологические и др. Изучения активности ферментных систем позволяет выявлять генные мутации, которые являются причинами болезней обмена веществ, например, фенилкетонурии, серповидно-клеточной анемии.

С помощью биохимических методов можно выявлять носителей патологического генов таких болезней как, например фенилкетонурия, сахарный диабет и др.

Близнецовый метод

В 1876 году Ф.Гальтоном был введен в медицинскую практику близнецовый метод изучения генетики человека. Он позволяет определить роль генотипа (совокупность наследственных свойств) и окружающей среды в проявлении признаков болезни.

Различают моно- и дизиготных близнецов.

Монозиготные (однояйцевые) близнецы развиваются из одной оплодотворенной яйцеклетки. Они имеют одинаковый генотип, но могут отличаться по фенотипу (совокупность внешних и внутренних признаков и свойств, сформировавшихся на базе генотипа в процессе развития) что обусловлено воздействием факторов внешней среды.

Монозиготные близнецы имеют большую степень сходства по признакам, которые определяются преимущественно генотипом: они всегда однополы, имеют одинаковые группы крови, один цвет глаз, однотипные узоры на пальцах и ладонях и др.

Дизиготные (двуяйцевые) близнецы развиваются после оплодотворения одновременно созревших яйцеклеток. Они имеют разный генотип, и их фенотипические отличия обусловлены как генотипом, так и факторами внешней среды.

Таким образом, фенотипические признаки и используются для определения зиготности близнецов.

Процент сходства близнецов по изучаемому признаку называется конкордантностью, а процент различия дискордантностью.

Для оценки роли наследственности и окружабщей среды в развитии болезни используется формула Хольцингера:

КМБ (%) – КДБ (%) / 100% - КДБ(%), где Н – доля наследственности, КМБ – конкордантность монозиготных близнецов, КДБ – конкордантность дизиготных близнецов.

Если результат расчетов по формуле Хольцингера приближается к единице, то основная роль развития болезни принадлежит наследственности. И наоборот, если результат стремится к нулю, большую роль сыграли факторы окружающей среды.

Популяционно-статистический метод изучения генетики человека основан на использовании математического выражения закона Харди-Вейнберга.

Нужно взять на р. Частоту встречаемости в популяции доминантного гена, за q частоту встречаемости рецессивного гена, за p2 частоту доминантных гомозигот, за 2pq частоту рецессивных гомозигот, за 2pq частоту гетерозигот.

Сумма частот всех генотипов должна быть принята за 1 (100%): p2 +2pq+q2=1(100%).

Метод позволяет определять частоту генов в генотипе в больших (свыше 4,5 тыс.) популяциях.

Современные методы пренатальной диагностики наследственных и врожденных заболеваний.

Пренатальная диагностика – это дородовое определение врожденной или наследственной патологии у плода.

С организационной точки зрения все беременные (без специальных показаний) должны обследоваться для исключения наследственной патологии просеивающими методами (УЗИ, биохимическое исследование сыворотки беременных).

Показаниями для пренатальной диагностики являются:

    наличие в семье точно установленного наследственного заболевания;

    возраст матери старше 35 лет, отца старше 45 лет;

    наличие у матери Х-сцепленного рецессивного патологического гена;

    беременные, имеющие в анамнезе спонтанные аборты, мертворождения неясного генеза, детей с множественными врожденными пороками развития и с хромосомной патологией;

    наличие структурных перестроек хромосом у одного из родителей;

    гетерозиготность обоих родителей при аутосомно-рецессивных заболевания.

В пренатальной диагностике используются инвазивные и неинвазивные методы.

Неинвазивные методы включают:

    ультразвуковое исследование плода по меньшей мере два раза (12-14 недель и 20-21 недели беременности). С помощью УЗИ диагностируются пороки развития конечностей, дефекты невральной трубки, гидро- и микроцефалия, пороки сердца, аномалии почек;

    биохимические методы включают определение уровня альфа-фетопротеина, хорионического гонадотропина, несвязанного эстрадиола в сыворотке крови беременных. Эти методы выявляют пороки развития, многоплодную беременность, внутриутробную гибель плода, маловодие, угрозу прерывания, хромосомные заболевания плода и другие патологические состояния. Оптимальные сроки исследования – 17-20 недель беременности.

Инвазивная пренатальная (дородовая) диагностика включает методы, при которых для исследования получают клетки плода или окружающих его тканей и структур. Такие методы сопровождаются повышенным риском невынашивания беременности и антенатальной гибели плода. Вероятность преждевременного прерывания беременности колеблется в зависимости от вида метода исследования и составляет от 1 до 6%. Поэтому инвазивная диагностика может использоваться в тех случаях, когда риск рождения больного ребёнка превышает возможности осложнений периода беременности.

Методы исследования тканей плода постоянно совершенствуются, чтобы обеспечить наиболее раннее, безопасное и достоверное выявление наследственных заболеваний. В последние годы наиболее широко распространены следующие способы инвазивной диагностики:

    амниоцентез – процедура получения амниотической жидкости путём пункции амниотического мешка через переднюю брюшную стенку под контролем ультразвука. Проводится в сроки беременности 15-18 недель. Полученную амниотическую жидкость подвергают последующему биохимическому исследованию, а клетки плода служат материалом для цитогенетического исследования или ДНК-диагностики. Можно диагностировать все хромосомные болезни и ряд генных заболеваний. При проведении амниоцентеза возможны осложнения (гибель плода, инфицирование полости матки).

    хорионбиопсия проводится на 9-13 недели беременности. Исследуемым материалом являются нативные клетки и структура клеток тканей хориона. Клетки ворсин хориона несут такую же информацию, как и клетки плода. Могут быть выявлены хромосомные нарушения, более 100 болезней обмена веществ: галактоземия, гликогенозы II, III, IV типа, болезнь Тея-Сакса и др.Примерно в 2,5-3% случаев биопсия хориона провоцирует самопроизвольное прерывание беременности, гибель плода или внутриматочное инфицирование.

    кордоцентез. Метод заключается во взятии крови из пуповины плода под ультразвуковым контролем. Проводится в сроки 20-23 недели, может быть использован и для внутриутробного лечения – введения лекарственных веществ. Риск осложнений составляет около 2%. Применяют данный метод для выявления хромосомных заболеваний, иммунодефицитов, инфекций, ДНК-диагностики генных болезней.

    фетоскопия и фетоамниография. Фетоскопия включает введение в полость матки специального прибора – фетоскопа, созданного на основе волоконно-оптической техники. Помимо выявления видимых снаружи дефектов плода, при данных исследованиях возможно осуществить биопсию кожи или печени плода. Исследование обычно используется только для диагностики тяжелых кожных заболеваний (ихтиоз, буллезный эпидермолиз). Проводится во втором триместре беременности (18-24 нед.), характеризуется 6-8 %-ным риском осложнений.

Массовые просеивающие программы.

Программа ранней диагностики наследственных болезней подразумевает массовое просеивание (скрининг) наследственных болезней обмена у всех новорожденных.

В европейских странах массовый скрининг проводится для доклинического выявления фенилкетонурии, гипотиреоза, врожденной гиперплазии коры надпочечников, галактоземии и муковисцидоза.

В Беларуссии массовое просеивание новорожденных на фенилкетонурию и гипотиреоз осуществляется почти повсеместно.

Генеалогический мет од является одним из первых научных методов исследования в медицинской генетике. Это метод изучения родословных, с помощью которого прослеживается распределение болезни (признака) в семье или роду с указанием типа родственных связей между членами родословной. Метод часто называют клинико-генеалогическим, поскольку речь идёт об изучении патологических признаков (болезней) в семье с привлечением приёмов клинического обследования.

В настоящее время метод позволяет решать ряд немаловажных вопросов и в частности:

    устанавливать является ли данный признак или заболевание единичным в семье или имеются несколько случаев данной патологии;

    выделять лиц подозрительных в отношении данного заболевания и составлять план их обследования для уточнения диагноза;

    определять тип наследования и выяснять, по какой линии, материнской или отцовской, идёт передача заболевания;

    выявлять лиц, нуждающихся в медико-генетическом консультировании, определять клинический прогноз для пробанда и его больных родственников с учётом особенностей заболевания и его генетической характеристики;

    разрабатывать план лечения и профилактики с учётом индивидуальных и семейных особенностей заболевания;

    прогнозировать вероятность проявления наследственной патологии в последующих поколениях в зависимости от типа наследования.

При клинико-генеалогическом методе выделяют два последовательных этапа:

    составление родословной и её графическое изображение;

    генетический анализ полученных данных.

Сбор сведений о семье начинается с пробанда – обследуемого человека, больного или здорового. При составлении родословной обычно пользуются условными обозначениями. Для составления родословной необходимы сведения не менее чем о 3-4-х поколениях семьи пробанда. Необходимо собирать сведения, касающиеся не только наличия конкретного заболевания или патологического признака, но и информацию обо всех случаях заболеваний, встречающихся среди членов семьи, спонтанных абортах, мертворождениях и ранней детской смертности.

Графическое изображение родословной (ввел Г. Юст в 1931году, используется в настоящее время):

Обследуемые братья и сёстры (сибсы), их жёны и мужья одного поколения располагаются в одном ряду слева направо в порядке рождения и обозначаются арабскими цифрами;

поколения обозначаются римскими цифрами;

любая родословная сопровождается пояснениями (легенда), где указываются данные о том или ином родственнике, который подлежит обследованию; возраст; начало и характер течения заболевания у пораженного; причину смерти и возраст на момент смерти члена родословной; описание методов диагностики заболеваний и др. сведения.

Генеалогический анализ родословной включает:

    Установление наследственного характера признака. Если исключить действие сходных внешних факторов (фенокопий), то можно думать о наследственном характере заболевания.

    Установление типа наследования. Для этого используют принципы генетического анализа и различные статистические методы обработки данных, полученных из родословной.

Выделяют пять основных типов наследования. Критерии аутосомно-доминатного, аутосомно-рецессивного, Х-сцепленного доминатного, Х-сцепленного рецессивного типов наследования мы с Вами разбирали (см. лекция №3).

Мультифакториальное наследование, критерии:

    высокая частота в популяции (сахарный диабет, артериальная гипертензия и т.д.);

    несоответствие законам Г.Менделя;

    существование различных клинических форм;

    чем реже болезнь встречается в популяции, тем выше риск для родственников больного заболеть этой же формой;

    чем сильнее выражена болезнь у пробанда, тем выше риск болезни для его родственников;

    риск заболеть у родственников тем выше, чем выше степень родства с больным членом семьи (выше число общих генов);

    Реферат >> Психология

    Может иметь и негенетическое происхождение. Генеалогический метод - исследование сходства между родственниками в разных поколениях... детьми одного человека . Метод широко используется при изучении наследственных причин ряда заболеваний. Исследование близнецов...

  • Методы исследования медицинской генетики

    Контрольная работа >> Биология

    ... исследований – плодовая мушка дрозофила. Исследования проводятся с 1902г. 1. ГЕНЕАЛОГИЧЕСКИЙ МЕТОД ... способностей человека . В настоящее время генеалогический метод ... МЕТОД С помощью биохимических методов определяется многочисленная группа наследственных ...

  • Современные методики исследования психогенетики человека

    Реферат >> Биология

    ... наследственности и среды в формировании психических и психофизиологических свойств человека занимается психогенетика. Целью исследований ... метода и препятствием в установлении генофонда популяции. 2.3. Генеалогический метод Генеалогический метод ...

У человека как объекта генетического исследования почти нет никаких преимуществ перед другими объектами.

Напротив, много препятствий, затрудняющих изучение его генетики: 1) невозможность произвольного скрещивания в эксперименте; 2) позднее наступление половой зрелости; 3) малое число потомков в каждой семье; 4) невозможность уравнивать условия жизни для потомства; 5) отсутствие точной регистрации проявления наследственных свойств в семьях и отсутствие гомозиготных линий; 6) большое число хромосом; 7) и самым главным затруднением изучения генетики человека в капиталистическом обществе является социальное неравенство, что затрудняет реализацию наследственных потенций человека.

Несмотря на указанные затруднения, генетика разработала некоторые методы, которые позволяют шаг за шагом изучать наследственность и наследование у человека. Существует несколько методов исследования: генеалогический, цитогенетический, близнецовый, онтогенетический и популяционный.

Следует иметь в виду, что любой признак, независимо от того, является ли он признаком дикого типа, т. е. относится к норме, или связан с каким-либо заболеванием, может служить моделью для изучения наследственности. Оградить человека от наследственных болезней или поражения его наследственности так же важно, как и выяснить наследование нормы. В настоящее время генетические методы разработаны главным образом в отношении морфологических признаков, которые генетически определяются достаточно четко (брахидактилия, альбинизм, дальтонизм, пятнистость кожи и волос и т. д.).

Генетическое исследование психических свойств все еще остается проблематичным, так как для них не найдены элементарные критерии признака в генетическом смысле. Почти все признаки Психической и творческой деятельности человека настолько комплексны и сложны, а также в сильной степени обусловлены внешними, в том числе и социальными, факторами, что генетический анализ этих свойств пока трудно осуществим, хотя наследственная их обусловленность не вызывает сомнения.

Можно сказать, что значительное большинство признаков, характеризующих вид Homo sapiens, может изучаться как количественные и сложные физиологические признаки, т. е. признаки, не проявляющие дискретного характера в онтогенезе. Эти признаки контролируются системой генотипа (полигенно). И пока эта система не разгадана хотя бы на примере просто организованных организмов, проблема признаков поведения остается малодоступной для генетического анализа. Напротив, мутантные признаки, выходящие за границы характеристики видовых признаков, служат хорошими генетическими моделями изучения наследственности и наследования в норме.

На дискретные мутантные признаки нельзя смотреть как на признаки только патологические, якобы не имеющие приспособительного значения. Возможно, что само появление человека с развитыми полушариями коры головного мозга, вертикальным положением тела, дискретной речевой сигнализацией является следствием крупных мутаций. В пользу этого свидетельствует очень

короткий промежуток времени эволюции человека, за который мелкие мутации вряд ли могли накопиться в таком количестве и дать такой значительный эволюционный эффект. Разумный человек для природы столь же «необычен», как домашняя курица, несущая 365 яиц в год вместо 10-15, или рекордистка-корова, дающая 16 тыс. кг молока в год вместо 600-700 кг.

Разделение признаков на нормальные и мутантные применительно к человеку и животным необходимо для познания эволюции человека и патологических явлений.

Совокупность видовых признаков человека и животных определяется системой генотипа, сложившейся под влиянием всех факторов отбора в процессе эволюции. Мутации, пребывающие в гетерозиготном состоянии у человека, по-видимому, так же необходимы, как и у животных, для поддержания их в популяции.

Самым опасным в разработке научных методов исследования животных и человека, особенно его способностей, является антропоморфический момент, т. е. выдача желаемого за действительность.

Генеалогический метод

Анализ наследования человека на основе составления родословной - генеалогии был предложен Ф. Гальтоном.

Генеалогический метод представляет собой изучение наследования свойств человека по родословным (педигри). Данный метод применим, если известны прямые родственники - предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям в ряду поколений и имеется достаточное число потомков в каждом поколении, или в том случае, когда имеются данные по достаточному числу разных семей, позволяющему выявить сходство родословных. Данные по совокупности сходных родословных подвергают статистической обработке.

Получившая наибольшее распространение система обозначения родословных человека была предложена Г. Юстом в 1931 г.

На основе большого числа проанализированных семей составляют родословные и производят математические расчеты соответственно типу наследования того или иного признака - доминантному или рецессивному, часто и не часто встречающейся мутации, сцепленному или не сцепленному с полом и т. д. Здесь мы не будем касаться приложения математического метода к данному анализу, отметим только, что весь этот формальный анализ основан на элементарных генетических закономерностях наследования.

Схемы родословной наследования дохминантного аутосомного гена, определяющего какой-либо признак, например заболевание (хондродистрофическая карликовость, буллезный эпидермолиз - свойство кожи образовывать большие пузыри при небольших травмах, ретинобластома и т. д.), или морфологический недостаток, например короткопалость (брахидактилия - отсутствие двух дистальных фаланг в пальцах).

Наследование признаков, определяемых рецессивными генами (рецессивное наследование), анализируется несколько сложнее, при составлении схем родословных.

Например, двоих в семье, появление двоих больных детей равно произведению вероятностей, т. е. 0,25 X 0,25, т. е. 6,25%.

Часто встречающиеся рецессивные аутосомные гены при условии, если носители их (аа) способны вступать в брак и давать потомство, будут находиться в высокой концентрации в популяции. В таком случае становятся очень вероятными браки аа X Аа, в потомстве от которых наследование данного признака будет имитировать наследование по доминантному типу 1:1. Однако, зная тип наследования и проявления тех и других генов даже в случае малочисленных семей, но при достаточном числе таких семей, можно установить истинный характер наследования.

Наследование генов, полностью сцепленных с полом, т. е. находящихся в негомологичных сегментах, и частично сцепленных с полом - локализованных в гомологичных сегментах X- и Y-xpoмосом, подчиняется установленным для половых хромосом закономерностям. Для доминантных и рецессивных генов это наследование будет определяться по-разному в зависимости от того, где данный ген локализован - в гомологичном или негомологичном сегменте X- и Y-хромосомы и каким образом он передается. Так, доминантный ген, вызывающий перепончатость пальцев, находящийся в негомологичном сегменте Y-хромосомы, наследуется от отцов и проявляется только у мужчин.

Для частично сцепленных с полом доминантных генов, находящихся в гомологичных сегментах половых хромосом, анализ несколько более затруднен, но также возможен. Примером сцепленного с полом наследования рецессивного признака является наследование гемофилии. В передаче этого признака в поколениях имеется прерывность; пораженные мужчины являются потомками здоровых матерей, которые были гетерозиготами по данному гену; больные гемофилией женщины могут быть потомками больного отца и больной или здоровой матери.

У человека найдено около 50 сцепленных с полом рецессивных генов. Интересно, что около половины из них обусловливают заболевание глаз. Уже с давних времен было известно, что степень передачи наследственных признаков в родственных (инбридинг) и неродственных браках (аутбридинг) различна. После того, как генетика установила закономерности более частого проявления рецессивных генов при инбридинге, нет необходимости пространно доказывать вред родственных браков. Чем выше коэффициент инбридинга, тем больше вероятность появления наследственных болезней в поколениях. В разных странах среди разных народов и классов общества, а также в разные эпохи родственные браки (между двоюродными, троюродными братьями и сестрами) встречаются с разной частотой. Так, например, в деревнях на островах Фиджи количество родственных браков достигает 29,7%, в некоторых кастах Индии - 12,9, в Японии (Нагасаки) - 5,03, в Голландии - 0,13-0,159, в Португалии- 1,40, в США (Балтимора) - 0,05%, и т. д. Процент родственных браков колеблется в отдельных районах одной и той же страны в зависимости от уклада жизни.

Вредность родственных браков мало заметна в отдельных родословных, но при сравнительном статистическом анализе болезней и смертностей она выступает с полной очевидностью.

Яркий пример выявления рецессивного гена при родственном браке.

В этой родословной родство поддерживается через бракосочетание сибсов (братья - сестры) разной степени родства. От двух родственных браков (четвероюродные сибсы) появилось в одной семье 4 ребенка из 8, а в другой - 2 из 5, страдающих наследственной амавротической идиотией. К. Штерн предполагает, что один из двух общих предков этих линий передал данный рецессивный ген через три поколения каждому из четырех родителей.

Иногда заболевание и смертность детей от родственных браков превышают на 20-30% таковые от неродственных браков. Очевидно, что причина рассматриваемого явления генетическая, а именно: большая вероятность проявления наследственных заболеваний и смертности в результате гомозиготизации рецессивных генов, определяющих физиологические недостаточности и смертность (летальные и полулетальные гены).

Итак, генеалогический метод является весьма ценным методом, однако его значение в исследованиях тем больше, чем точнее и глубже составлены родословные. По мере роста цивилизации и более точной регистрации родословных роль этого метода в генетике человека будет возрастать.

Близнецовый метод

Близнецами называют потомство, состоящее из одновременно родившихся особей у одноплодных животных (человек, лошадь, крупный рогатый скот, овцы и др.).

Близнецы могут быть однояйцевыми и разнояйцевыми.

Идентичные, или однояйцевые, близнецы (ОБ) развиваются из одного яйца, оплодотворенного одним сперматозоидом, когда из зиготы вместо одного зародыша возникают два или более (полиэмбриония). В силу того, что митотическое деление зиготы дает два равнонаследственных бластомера, однояйцевые близнецы, сколько бы их ни развивалось, должны быть наследственно идентичны и одного пола. Это явление представляет собой пример бесполого, а точнее, вегетативного размножения животных.

Разнояйцевые близнецы (РБ) развиваются из одновременно овулировавших разных яйцеклеток, оплодотворенных разными сперматозоидами. И так как разные яйцеклетки и сперматозоиды могут нести различные комбинации генов, то разнояйцевые близнецы могут быть наследственно столь же разными, как и дети одной и той же супружеской пары, родившиеся в разное время. Разнояйцевые близнецы могут быть одного (РБо) или разного пола (РБр).

Чаще в литературе вместо термина «разнояйцевые близнецы» (РБ) употребляют термин «двуяйцевые близнецы» (ДБ), так как двойни встречаются чаще. Однако термин «разнояйцевые близнецы» лучше подчеркивает разницу между ОБ и РБ; однояйцевые близнецы также чаще рождаются двойнями.

Судя по данным, полученным на млекопитающих, для объяснения образования ОБ у человека может быть несколько гипотез:

  • расхождение бластомеров при первом дроблении зиготы и раздельное развитие зародыша из этих бластомеров;
  • разделение группы клеток на стадии бластоциста (до гаструляции);
  • разделение зародышей на ранней стадии гаструляции. Наиболее вероятным путем предполагают второй.

Число близнецов в одних родах у человека колеблется: чаще всего встречаются двойни, реже тройни, еще реже - четверни, совсем редко - пятерни. По данным И. И. Канаева, за последние 150 лет в США установлено четыре случая родов пятерни, в Канаде - два случая. Факт рождения ОБ - пятерни девочек, доживших до взрослого состояния, - известен в семье канадского фермера Дионн (1934 г.). Рассчитано, что пятерни рождаются один раз на 54 700 816 родов, шестерни - на 4712 млн. родов, семерни известны только как исключение. В среднем частота рождения близнецов составляет 1% с колебаниями в пределах 0,5-1,5%. Близнецы менее жизнеспособные, и поэтому их количество при рождении меньше, чем при зачатии, а во взрослом состоянии меньше, чем при рождении.

Расчет частоты ОБ по отношению к РБ делается исходя из теоретического соотношения однополых и разнополых пар РБ при рождении близнецов: 25%♀♀ + 50%♀♂ + 25%♂♂ вычитание числа пар разного пола из общего числа всех пар одинакового пола (мужского и женского) даст разницу, составляющую число пар ОБ, которая в среднем колеблется от 21 до 33,4% всех близнецов.

Для использования близнецов в генетических исследованиях очень важно точно диагностировать тип ОБ и тип РБ. Диагностика производится на основании следующих критериев:

  1. ОБ обязательно одного пола, РБ могут быть как одного пола, так и разных полов;
  2. ОБ имеют, как правило, один общий хорион, РБ - разные хорионы;
  3. реципрокная трансплантация тканей у ОБ столь же успешна, как и автотрансплантация, у РБ она невозможна;
  4. наличие сходства (конкордантности) у ОБ и несходства (дискордантности) у РБ по многим признакам.

Для диагностики следует выбирать признаки, четко наследующиеся и менее всего подверженные изменению под влиянием факторов среды; к таким признакам относятся группы крови, пигментация глаз, кожи и волос, кожный рельеф (отпечатки кончиков пальцев, ладоней, ступней и др.). Если по одному-двум таким признакам выявлено различие близнецов, то они, как правило, являются РБ.

Все сомнительные случаи диагностики близнецов могут быть вызваны либо нарушением развития одного из партнеров ОБ, либо сходством родителей по ряду признаков. Однако последнее встречается чрезвычайно редко. Следует заметить, что нарушение развития одного из партнеров ОБ обычно объясняют неодинаковым действием факторов внутриутробной жизни и возникновением соматических мутаций на ранних стадиях эмбрионального развития, до закладки органов. Различного рода генные и хромосомные перестройки, моносомия и другие мутации, возникающие у одного из партнеров, способны вызвать значительные различия в фенотипе ОБ. Поэтому необходимо учитывать возможность соматических мутаций у ОБ в раннем эмбриогенезе.

Согласно обобщениям И. И. Канаева, изложенным в его превосходной монографии сущность близнецового метода в генетике сводится к следующим положениям:

1) пара ОБ имеет тождественную комбинацию, пара РБ - разные комбинации генотипов родителей;

2) для обоих партнеров одной пары ОБ внешняя среда может оказаться одинаковой, а для другой - разной. Если партнеры ОБ в течение жизни испытывают разное влияние, то это приведет к внутрипарному различию. Отсюда пары могут быть с внутрипарной одинаковой и внутрипарной разной средой.

Сравнение ОБ с одинаковой средой с ОБ с разной средой открывает возможность судить о роли влияния среды на внутрипарные различия близнецов в течение всей жизни. Сравнение ОБ с одинаковой средой и РБ с одинаковой средой позволяет выяснить роль наследственного фактора. Такого рода изучение проводят на большой выборке и обрабатывают статистически.

Исходя из разности генетического происхождения ОБ и РБ вытекает, что если по одним и тем же признакам нет различия у ОБ и есть таковые у РБ, то очевидно, что данные различия признаков у последних обусловлены наследственными факторами. Если же внутрипарные различия в тех же признаках встречаются у одного и другого типа близнецов, то очевидно, что они могут быть вызваны факторами среды. Из данных дискордантности у ОБ и РБ по ряду морфологических признаков, видно, что внутрипарное различие у РБ встречается во много раз чаще, чем у ОБ.

Представлены некоторые данные С. Рида относительно сравнительной частоты патологии у второго партнера в случае заболевания одного из близнецов.

В процентах показана частота конкордантности заболеваний у двух типов близнецов, из него видно, что если один партнер заболел одной из указанных болезней, то вероятность заболевания второго у ОБ значительно выше, чем у РБ. В. П. Эфроимсон, анализируя данные по частоте контордантных пар, совершенно правильно указывает, что высокая Наследственная предрасположенность ОБ к заболеваниям проявляется при наличии провоцирующего фактора; без него этот процент будет значительно ниже.

Близнецовый метод дает возможность с наибольшей точностью выяснить наследственную предрасположенность человека к ряду заболеваний и свойств. Другими методами очень трудно или почти невозможно исследовать многие инфекционные и опухолевые заболевания, воспаления кожи и различных органов, а также характеристики нормальной нервной деятельности человека.

При использовании близнецового метода приходится учитывать условия совместного и раздельного воспитания в жизни партнеров, социальные условия, в которых они находятся, и т. д. Тем не менее близнецовый метод позволяет наиболее точно определить, коэффициент наследуемости разных признаков, а также судить о гетерогенности популяции по изучаемым генам и вычленять роль среды в определении изменчивости изучаемых признаков.

Цитогенетический метод

Цитогенетическим методом в генетике человека обычно называют цитологический анализ кариотипа человека в норме и патологии.

Правильнее этот метод называть цитологическим, а не цитогенетическим, поскольку генетический анализ путем скрещивания у человека исключен, и носители хромосомных нарушений если выживают, то оказываются, как правило, бесплодными. Однако изредка в отношении некоторых хромосомных нарушений удается сочетать цитологический метод с генеалогическим и устанавливать связь фенотипического эффекта с определенным типом хромосомных изменений. В силу этих обстоятельств можно сохранить принятый в литературе термин «цитогенетический метод» в изучении генетики человека. В тех же случаях, где такого параллелизма исследовании не ведется, применение данного термина неправомочно.

Цитогенетическим методом исследуют различного рода гетероплоидию и хромосомные перестройки в соматических тканях человека, вызывающие различные фенотипические отклонения от нормы.

Чаще всего этот метод применяют на культуре ткани. Он позволяет учитывать крупные аномалии хромосом, возникающие как в половых, так и соматических клетках. Оказалось, что у человека, так же как и у животных, довольно часто возникают трисомики и моносомики по различным парам хромосом вследствие нерасхождения аутосом и половых хромосом в мейозе. Трисомия и моносомия по половым хромосомам у человека обнаруживаются на основе анализа полового хроматина.

В ходе относительно продолжительного индивидуального развития человека в клетках различных тканей накапливаются аномалии хромосом (хромосомные перестройки, а также изменение числа хромосом). Ткани организма представляют собой разнообразные популяции генетически различающихся клеток, в которых с возрастом концентрация клеток с патологическими ядрами возрастает. В этом случае цитогенетический метод позволяет изучать старение тканей на основе исследования структур клеток в возрастной динамике «популяции» соматических и генеративных тканей.

Поскольку частота возникновения хромосомных аномалий зависит от влияния на организм разнообразных мутагенов (ионизации, химических агентов - фармакологических препаратов, газового состава среды и др.), то цитогенетический метод позволяет устанавливать мутагенное действие факторов внешней среды на человека.

Применение цитогенетического метода особенно расширилось в связи с открытием причин ряда физических и психических заболеваний - так называемых хромосомных болезней.

Существует несколько заболеваний человека, например болезнь Клайнфельтера, Шерешевского-Тернера, Дауна и др., причины которых долго оставались неизвестными, пока цитологическими методами у таких больных не были обнаружены хромосомные аномалии.

Больные мужчины с синдромом Клайнфельтера характеризуются недоразвитием гонад, дегенерацией семенных канальцев, умственной отсталостью, непропорциональным ростом конечностей и т. д. У женщин встречается синдром Шерешевского-Тернера. Он проявляется в замедлении полового созревания, недоразвитии гонад, отсутствии менструаций, бесплодии, малом росте и в других Патологических признаках.

Оказалось, что оба эти синдрома у потомков являются следствием нерасхождения половых хромосом при образовании гамет родителей. Вследствие нерасхождения Х-хромосом у женского гомогаметного) пола в процессе мейоза могут возникать гаметы двумя Х-хромосомами, т. е. XX + 22 аутосомы, и без Х-хромосом, т. е. 0 + 22; у мужского (гетерогаметного) пола соответственно гаметы XY + 22 и 0 + 22. В случае оплодотворения таких яйцеклеток нормальными сперматозоидами (X + 22 или Y + 22) возможно образование следующих классов зигот: XXX + 44, 0Х + 44 и XXY + 44, 0Y + 44.

Из этого следует, что число хромосом у зигот разного происхождения может колебаться от 47 до 45, причем особи 0Y + 44, очевидно, не выживают, так как ни разу не были найдены. Хромосомный набор XXY + 44 присущ мужчине с синдромом Клайнфельтера (мужская интерсексуальность), хромосомные наборы Х0 + 44 и XXX + 44 имеют женщины с синдромом Шерешевского-Тернера.

При дальнейшем анализе больных с разными синдромами выяснилось, что вследствие нерасхождения половых хромосом могут возникать разного типа хромосомные аномалии, в частности полисомия. Встречаются, например, мужчины с такими наборами хромосом: XX Y, XXX Y, ХХХХ Y, а женщины - XXX, ХХХХ.

Особенность роли половых хромосом в детерминации пола у человека в случае их нерасхождения, в отличие от дрозофилы, проявилась в том, что набор хромосом XX Y всегда определяет мужской пол, а набор Х0 - женский. При этом увеличение числа Х-хромосом в сочетании с одной Y-хромосомой не изменяет определение мужского пола, а лишь усиливает синдром Клайнфельтера. Трисомия, или полисомия по Х-хромосоме, у женщин также часто вызывает заболевания, сходные с синдромом Шерешевского-Тернера.

Заболевания, вызванные нарушением нормального числа половых хромосом, диагностируются цитологическим методом - анализом полового хроматина. В тех случаях, когда в тканях мужчин имеется нормальный набор половых хромосом - XY, половой хроматин в клетках не обнаруживается. У нормальных женщин - XX - он обнаруживается в виде одного тельца. При полисомии по Х-хромосомам у женщин и мужчин количество телец полового хроматина всегда на единицу меньше числа Х-хромосом, т. е. n x = n·Х - 1. Так, в клетках мужчин с синдромом Клайнфельтера при наборе XX Y имеется одно тельце полового хроматина, при наборе XXXY - два, при наборе XXXXY - три; у женщин с синдромом Шерешевского-Тернера соответственно: Х0 - нет тельца, XXX - два тельца, ХХХХ - три тельца полового хроматина, и т. д. Предполагается, что в каждой такой зиготе генетически активна лишь одна из Х-хромосом. Остальные хромосомы переходят в гетеропикнотическое состояние в виде полового хроматина.

Причины этой закономерности не выяснены, однако предполагается, что она связана с нивелированием действия генов половых хромосом у гетеро- и гомогаметного пола.

Как мы знаем, нерасхождение хромосом может происходить не только в мейозе, но и в соматических клетках в течение всего эмбриогенеза животного начиная с первых дроблений яйца. В силу последнего среди людей при нарушении расхождения половых хромосом могут появиться больные мозаики-женщины и мозаики-мужчины. Так, например, описаны мозаики следующих типов: двойные: Х0/XX, Х0/XXX и X0/XY, X0/XYY, тройные: Х0/ХХ/ХХХ, XX/X0/XY, а также четверные мозаики, когда соматические клетки одного человека содержат четыре разных набора хромосом.

Кроме рассмотренного типа болезней, вызванных изменением числа половых хромосом в зиготе, хромосомные болезни могут быть вызваны нерасхождением аутосом и разного рода хромосомными перестройками (транслокациями, делециями). Так, например, у детей с врожденной идиотией - болезнью Дауна, сопровождающейся малым ростом, широким круглым лицом, близко расположенным узкими глазными щелями и полуоткрытым ртом, была обнаружена трисомия по 21 хромосоме. Установлено, что частота встречаемости болезни Дауна у новорожденных зависит от возраста матерей.

С врожденными хромосомными аномалиями связывают весьма разнообразные болезни. Поэтому цитогенетический метод приобретает важное значение в этиологии болезней человека.

Популяционный метод

Популяционный метод позволяет изучать распространение отдельных генов или хромосомных аномалий в человеческих популяциях.

Популяционный метод основывается на математических методах. Для анализа генетической структуры популяции необходимо обследовать большую по размеру выборку, которая должна быть репрезентативной - объективно отражать всю генеральную совокупность, т. е. всю популяцию в целом. В обследуемой выборке устанавливают распределение лиц по соответствующим четко очерченным фенотипическим классам, различия между которыми наследственно обусловлены. Затем, исходя из найденных фенотипических частот, определяют генные частоты.

На основе знания генных частот представляется возможность дать описание анализируемой популяции в соответствии с формулой Гарди-Вайнберга и заранее предсказать вероятный характер расщепления в потомстве лиц, относящихся к тем или иным фенотипическим классам. Исследование генных частот имеет важное значение для оценки последствий родственных браков, а также для выяснения генетической истории человеческой популяции в целом.

Частота распространения в популяциях разных аномалий оказывается различной; при этом подавляющее количество соответствующих рецессивных аллелей представлено в гетерозиготном состоянии.

Так, примерно каждый сотый житель Европы гетерозиготен по гену амавротической идиотии (болезнь Шпильмайера-Фогта), тогда как заболевают этой болезнью в юношеском возрасте из 1 млн. только 25 человек, являющихся гомозиготными. Альбиносы в европейских странах встречаются с частотой 1 на 20 000, хотя гетерозиготное состояние этой аллели присуще каждому семидесятому жителю.

Несколько иначе дело обстоит в случае аномалий, наследующихся сцеплено с полом, примером чего может служить дальтонизм - цветная слепота, которая контролируется, по-видимому, рядом аллелей, распределенных по двум тесно сцепленным локусам в Х-хромосоме. Среди мужского населения частота дальтоников (q) соответствует суммарной частоте рецессивных аллелей и составляла, например, в Москве в 30-х годах, по данным Р. И. Серебровской, 7%, в то же время среди женского населения той же популяции цветная слепота была только у 0,5% (q 2), но в гетерозиготном состоянии примерно 13% женщин несут аллели, обусловливающие дальтонизм.

Как мы уже говорили выше, рассматривая генеалогический метод, вероятность появления в потомстве рецессивных гомозигот может быть различной при вступлении в брак лиц, имеющих разную степень родства. Так, у супругов, являющихся по отношению друг к другу двоюродными братьями и сестрами, вероятность рождения детей, гомозиготных по рецессивной аллели, распространенной в популяции с частотой q, составит уже не q 2 , а большую величину, а именно q/16 (1 +15q).

Это связано с тем, что если один из общих предков таких супругов - бабушка или дедушка - нес в гетерозиготе рецессивную аллель, то с вероятностью 1/16 данная аллель передастся обоим двоюродным сибсам.

Вредные последствия родственных браков особенно наглядно проявляются в изолированных популяциях ограниченного размера, так называемых изолятах . Под изолятом понимают группу особей популяции, которые вступают в брак большей частью с особями своей группы и поэтому характеризуются значительным коэффициентом кровного родства. Такими изолятами могут быть отдельные изолированные селения, общины и т. д. Внутри изолята более вероятны родственные браки (инбридинг), и больше шансов на то, что супруги будут нести одинаковые мутантные гены, следствием чего является увеличение вероятности проявления рецессивных аллелей в гомозиготном состоянии. Разные изоляты несут различные концентрации сходных или разных генов.

На Марианских островах и острове Гуам смертность среди местного населения от бокового амиотрофического склероза (связанного с поражением клеток передних рогов спинного мозга) в 100 с лишним раз превышает смертность от этой болезни в других странах. В Южной Панаме в провинции Сан-Блаз весьма заметную часть племени кариба куна составляют альбиносы, которые появляются здесь в каждом поколении. В одном селении на р. Роне в Швейцарии среди 2200 жителей имеется более 50 глухонемых, и еще у 200 обнаруживаются некоторые дефекты слуха. По всей вероятности, во всех подобных случаях резкого увеличения концентрации отдельных аллелей известную роль играет генетический дрифт, неравномерное размножение в прошлом отдельных семей, родов, а также снижение миграции.

По мере роста цивилизации и развития производительных сил общества количество изолятов уменьшается, и их значение для популяции в целом падает. Однако они все еще имеют место.

Знание генных частот, как уже говорилось позволяет предсказывать характер расщепления в потомстве отдельных фенотипических классов родительских особей.

Исходя из формулы Гарди-Вайнберга, можно показать, что при моногенном наследовании расщепление по фенотипу в потомстве доминантных матерей должно осуществляться в соотношении p(1 + pq) доминантов к р рецессивов, или (l+pq):q 2 ; в потомстве рецессивных матерей расщепление по фенотипу должно быть pq 2: q 3 , или p: q.

Приведем пример. В одном исследовании при изучении резус-фактора частота рецессивной аллели rh в популяции составила 0,4, а частота доминантной аллели Rh - 0,6. Отсюда следовало ожидать, что в потомстве резус-положительных матерей частота резус — положительных детей (Rh +) примерно в 7,8 раза будет превышать частоту резус-отрицательных детей (Rh —); в потомстве резус-отрицательных матерей соответствующее превышение будет в 1,5 раза.

Действительные соотношения в обследованной выборке составили:

  • в первом случае 1475 Rh + : 182 Rh — , или 8,1: 1,
  • во втором случае 204 Rh + : 129 Rh — , или 1,6: 1.

Таким образом, наблюдаемые результаты при расщеплении весьма хорошо соответствуют теоретически ожидаемым результатам, предсказанным на основе анализа генных частот.

Популяционный анализ полиморфизма по группам крови интересен тем, что он помогает понять динамику генетической структуры различных популяций и способствует выявлению связей между ними.

Разные популяции существенно различаются по своей генетической структуре, в частности по группам крови. При этом удается проследить некоторые вполне четкие закономерности. Если концентрация аллели I B наибольшая в районе Индии и Китая, то к востоку и западу от этого района происходит постепенное падение ее вплоть до нуля среди коренных обитателей Америки и Австралии. В то же время у американских индейцев (и аборигенов Австралии и Полинезии) максимума достигает концентрация аллели I 0 . Аллель I А редка у коренного населения Америки, а также в Индии, Аравии, тропической Африке, в Западной Европе.

Для объяснения этих различий в генетической структуре популяций недавно была предложена гипотеза, согласно которой решающим фактором отбора в отношении групп крови системы АВ0 явились эпидемии чумы и оспы. Возбудитель чумы Pasteuvella pest is, обладая свойством антигена 0, оказывается наиболее губительным для людей с группой крови 0, поскольку такие лица не способны вырабатывать достаточное количество антител в случае инфекции. По аналогичной причине вирус оспы наиболее опасен для людей с группой крови А. Там, где свирепствовала чума (Индия, Монголия, Китай, Египет), шла интенсивная элиминация аллели I 0 , а там, где особенно свирепствовала оспа (Америка, Индия, Аравия, тропическая Африка), в первую очередь элиминировалась аллель 1 А. В районах Азии, где чума и оспа были эндемичны, наибольшую частоту получила аллель 1 в.

В главе 5 мы рассмотрели моногенное наследование серповидноклеточной анемии, обусловленное расщеплением по аллелям гена S. Высокая концентрация аллели S в поясе эндемичной малярии (Африка, Средиземноморье) оказалась связанной с повышенной устойчивостью к малярии гетерозигот (Ss) и с возникновением. в результате этого системы сбалансированного наследственного полиморфизма.

Таким образом, в обоих приведенных примерах анализа полиморфизма по группам крови и серповидно-клеточной анемии мы видим, как применение популяционного метода позволяет вскрывать генетическую структуру человеческих популяций.

Онтогенетический метод

Онтогенетический метод позволяет устанавливать по фенотипу носительство рецессивных аллелей в гетерозиготном состоянии и хромосомных перестроек.

Генетической основой проявления рецессивных генов в гетерозиготном состоянии является, по-видимому, неполный блок в цепи синтеза того или иного метаболита, вызванного действием доминантной аллели данного гена.

Известно, что некоторые наследственные болезни проявляются не только у лиц, гомозиготных по аллелям, вызывающим заболевание, но в стертой форме и у гетерозигот. Поэтому в настоящее время усиленно разрабатываются методы определения гетерозиготного носительства в онтогенезе. Так, гетерозиготный носитель фенилкетонурии (повышенное содержание фенилаланина в крови определяется дополнительным введением фенилаланина и последующим определением уровня его (или тирозина) в плазме крови. Наличие гетерозиготности по данной аллели устанавливается по повышенному содержанию фенилаланина. В норме (т. е. у гомозигот по доминантной аллели) уровень фенилаланина не изменяется. В норме в крови присутствует фермент каталаза, необходимый для углеводного обмена, но встречается ген, который в гомозиготном состоянии вызывает отсутствие каталазы. У гомозиготных носителей этого гена наблюдается болезнь акаталаземия - расстройство углеводного обмена. Гетерозиготы занимают промежуточное положение по активности каталазы без большого захождения между доминантными и рецессивными гомозиготами.

По активности каталазы можно точно определить гетерозиготных и гомозиготных носителей аллели акаталаземии среди близких родственников и родителей.

Гетерозиготное носительство аллели, определяющей мышечную дистрофию типа Дюшена, тестируется по активности криатинфосфокиназы. Теперь разработаны, подобные тесты для 40 наследственных болезней, определяемых рецессивными аллелями.

В настоящее время онтогенетический метод обогатился за счет биохимических, иммунологических и молекулярных приемов исследования, описанию которых посвящен ряд специальных руководств.

Важность онтогенетического метода очевидна для установления носительства рецессивного гена в гетерозиготном состоянии у родственников семьи, в которой появляется наследственно больной ребенок. Диагностика в онтогенезе важна для расчета вероятности появления наследственно больных потомков при родственных и смешанных браках. По мере упрощения тестирования гетерозиготного носительства этот метод должен будет внедряться в целях консультации супружеских пар относительно возможности появления заболевания у их детей, а также для изучения распространения мутаций в популяциях.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .